## Artificial Intelligence

What is what? Everything you always wanted to know.

# Estimation

Estimation of Distribution Algorithms (EDA), sometimes called Probabilistic Model-Building Genetic Algorithms (PMBGA), are an outgrowth of genetic algorithms. In a genetic algorithm, a population of candidate solutions to a problem is maintained as part of the search for an optimum solution.

Nonlinear Estimation Procedures
Least Squares Estimation
Loss Functions
Weighted Least Squares
Maximum Likelihood
Maximum likelihood and probit/logit models
Function Minimization Algorithms
Start Values, Step Sizes, Convergence Criteria
Penalty Functions, Constraining Parameters ...

Maximum Likelihood Estimation
Tutorial Slides by Andrew Moore
MLE is a solid tool for learning parameters of a data mining model. It is a methodlogy which tries to do two things.

Using Genetic Algorithm for Parameter Estimation
By Yi Wang
Computer Science Department,Tsinghua University,100084, Beijing, China
wangy01@mails.tsinghua.edu.cn ...

"Estimation and Inference by Compact Coding", Wallace and Freeman, Journal of the Royal Statistical Society B 49(3):240--265, 1987
The Computer Journal special issue: MDL vs. MML
"The Maximum Local Mass estimate" ...

This ~ procedure is called inferential statistics. From your sample, you want to know especially the distribution of the sample. Because your sample is representing the population, the distribution of the sample is also characterizing the population. From the distribution we can get ...

[17] "~ of Fuzzy Membership from Histograms, Information Sciences" by B.B. Devi et al (Vol. 35, 1985, pp. 43-59).
[18] "Fuzzy Logic" by Bart Kosko and Satoru Isaka (Scientific American, Vol. 269, July 1993, pp. 76).

In the experimental part of the thesis (Chapters 3-5), we present a set of magnitude ~ experiments investigating gradience in grammar. The experiments deal with unaccusativity/unergativity, extraction, binding, word order, and gapping.

The concepts of belief state (a set of possible worlds) and state ~ (maintaining the belief state) are introduced in these settings; later in the book, probabilities are added.

Standard techniques are learning confidence intervals (e.g. error bars for neural networks) and general probability density ~.

In one ~, it is approximately, 100 teraflops. The processing power of Blue Gene/L supercomputer already crossed 280.6 teraflops - that is 280.6 trillion calculations per second . So, as per this ~, today's machines already crossed the brain power.

For route-planning a reasonable heuristic is the straight-line distance to the goal (SLD): # This is our ~ of the cost to the goal - the straight line # distance to the goal (SLD). This is admissible, as it can never over- # estimate the distance: SLD is the shortest possible distance.

enemy troop locations
~ of enemy resources
scouting by own units
weak points in the AI's defense ...

This method is a straightforward combination of branch+bound, (under-) ~ of remaining distances (i.e. admissible heuristic) and dynamic programming techniques.

The prediction of pharmaceutical responses based on second order polynomial equation, however is often limited to low levels, resulting in the poor ~ of optimal formulations. To overcome this limitation of factorial design (FD), artificial neural network (ANN) was incorporated.2,3,4,5 ...

His failure to exhibit the proper biological characteristics compromises the Ice Man Hypothesis in their ~s. However, not all villagers react this way. Some - including the one who came to know Data best - are not dissuaded.

well-studied statistical inference techniques available;
flexibility in choosing the component distribution;
obtain a density ~ for each cluster;
a "soft" classification is available.

Spall, J.C. (2003). Introduction to Stochastic Search and Optimization: ~, Simulation. Wiley.

In the sub-field of data classification, neural-network methods have been found to be useful alternatives to statistical techniques such as those which involve regression analysis or probability density ~ (e.g., Holmström et al., 1997).

Because of these features of genetic algorithm, they are used as general purpose optimization algorithm. They also provide means to search irregular space and hence are applied to a variety of function optimization, parameter ~ and machine learning applications.

estimator, which attempts to follow the response of the actual plant, when
both the plant and the estimator are jointly excited by a common input signal.
The fuzzy and artificial neural network-based learning techniques have recently
been identified as new tools for plant ~.

See also: What is the meaning of Algorithm, Information, Process, System, Values?